Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

*110214688

PHYSICS 0625/31

Paper 3 Theory (Core)

May/June 2021

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.
- Take the weight of 1.0 kg to be 10 N (acceleration of free fall = 10 m/s²).

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

1 Fig. 1.1 shows a speed–time graph for a car.

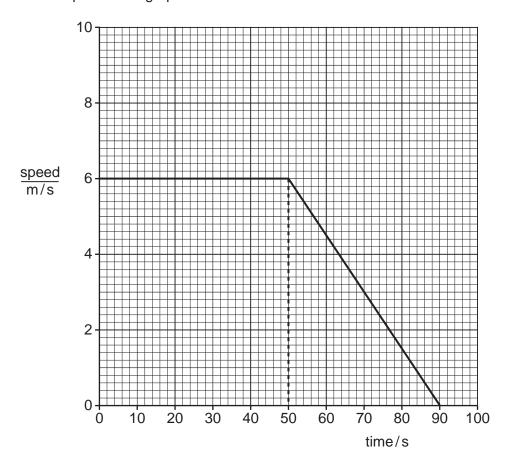


Fig. 1.1

(a)	(i)	Describe the motion of the car from 0 to 50 s, as shown in Fig. 1.1.	
			[1]
	(ii)	Describe the motion of the car from 50s to 90s, as shown in Fig. 1.1.	
			[1]

(iii) Calculate the distance travelled by the car between 50s and 90s.

distance travelled = m [3]

(b)	A motorc	ycle travels	at a	constant	speed
-----	----------	--------------	------	----------	-------

(i) The motorcycle travels 710 m in 87 s.

Calculate the speed of the motorcycle and show that it is close to 8 m/s.

[3]

(ii) The motorcycle in part (b)(i) travels at a constant speed for 87s.

On Fig. 1.1, draw the speed–time graph for the motorcycle.

[2]

[Total: 10]

2

A lic	quid-i	in-glass thermomet	er contains mercury.			
(a)	The	mass of the mercu	ury in the thermometer is 12g			
	(i)	Calculate the weig	ght of the mercury.			
			weight of mercury =	:	N [3]
	(ii)	The 12g of mercu	ry has a volume of 0.88 cm ³ .			
		Calculate the dens	sity of mercury.			
			density of mercury =	·	g/cm ³ [3]
(b)	The	mercury in the the	rmometer expands when its t	emperati	ure rises.	
	(i)		ns to the mass of the mercury	/ when its	s temperature rises.	
		Tick (✓) one box.				
			mass decreases			
			mass stays the same			
			mass increases]	1]
	(ii)	State what happe	ns to the density of the mercu	ırı whon		.,1
	(11)	Tick (✓) one box.	ns to the density of the merce	ily Wileii	ns temperature rises.	
			density decreases			
			density stays the same			
			density increases			
					[1]
					[Total:	8]

- **3** A plank balances horizontally on a log of wood, which acts as a pivot.
 - (a) A girl sits on one end of the plank, and her brother pushes down on the other end to make the plank balance horizontally. Fig. 3.1 shows the arrangement.

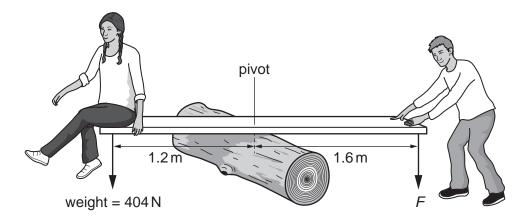


Fig. 3.1 (not to scale)

Calculate the moment of the girl's weight about the pivot and show that it is close to 480 Nm.

[3]

(b) The plank balances horizontally when the boy pushes down with a force *F* at a distance of 1.6 m from the pivot.

Calculate the size of force F.

[Total: 6]

[Total: 7]

A co	ountry needs to build new power stations to provide electricity for homes and industry.
One	e type of power station is a coal-fired power station.
(a)	Describe how the energy stored in the coal is used in a coal-fired power station to generate electrical energy.
	[4]
(b)	Some people in the country argue against building a new coal-fired power station.
	They say that the power station is expensive and not very efficient.
	Explain the meaning of not very efficient.
	[1]
(c)	Apart from cost and efficiency, give two other reasons for not building a coal-fired power station.
	1
	2
	[2]

5 (a) A man starts pulling his suitcase across the floor.

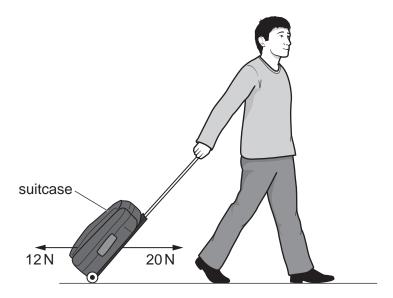


Fig. 5.1 (not to scale)

(i) Fig. 5.1 shows the horizontal forces acting on the suitcase.

Calculate the resultant horizontal force on the suitcase.

size of force =		N
direction		
	[2	21

(ii) After a short time, the suitcase is moving at a constant speed.

Suggest values for the sizes of the two horizontal forces on the suitcase when it is moving at a constant speed.

(b) The total downward force of the suitcase on the ground is 150 N. The suitcase has two wheels. Each wheel has an area of 0.60 cm² touching the ground.

Calculate the pressure of the suitcase on the ground.

pressure on the ground =
$$N/cm^2$$
 [4]

[Total: 7]

6 Fig. 6.1 shows a smoke cell. The smoke cell contains air molecules and smoke particles. A student views the motion of the smoke particles in the smoke cell by using a microscope.

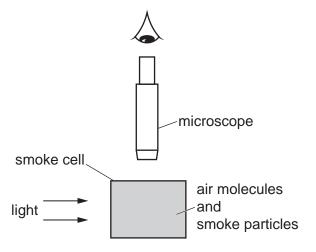


Fig. 6.1

Fig. 6.2 shows the path of one of the smoke particles.

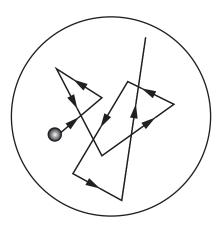


Fig. 6.2

(a)	State the term used for the motion of the smoke particle.	
		[1]
(b)	Explain the motion of the smoke particle in Fig. 6.2.	

.....[3]

[Total: 4]

7 A narrow beam of white light enters a glass prism and splits into the colours of the visible spectrum, as shown in Fig. 7.1.

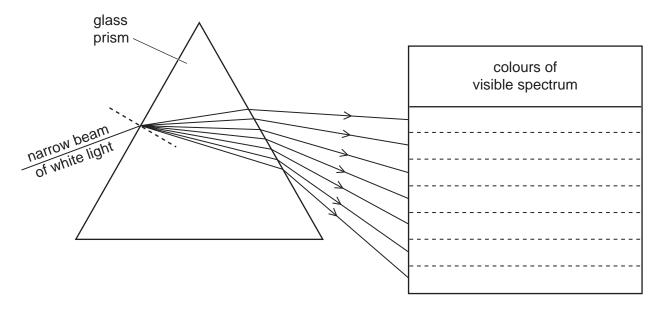


Fig. 7.1

(a) The rays leaving the prism represent the seven main colours of the visible spectrum.

Complete the labelling on Fig. 7.1 by writing the colours of the visible spectrum in the table.

[2]

- (b) State the term used to describe:
 - (i) the bending of the light as it enters the prism

.....[1]

(ii) the different amounts of bending that produce the spectrum.

.....[1]

(c) A student incorrectly writes some sentences about electromagnetic waves. His teacher circles a mistake in each sentence.

In the table, write a suitable correction for each mistake. The first one has been done for you.

student's sentences	correction
the speed of light is faster than radio waves in a vacuum	the same as
X-rays are used in television remote controllers	
radio waves have the highest frequencies in the electromagnetic spectrum	

[2]

[Total: 6]

8 (a) A loudspeaker is producing a sound.

Choose words from the box to complete the sentences about sound.

	amplitude	frequency	speed	wavelength

- To increase the loudness of the sound, increase the of the sound wave.
- (ii) To increase the pitch of the sound, increase the of the sound wave. [1]
- **(b)** Two students determine the speed of sound in air. The students stand together, 80 m from a large brick wall as shown in Fig. 8.1.

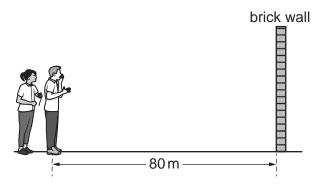


Fig. 8.1 (not to scale)

One student shouts and as he shouts the other student starts a stop-watch. She stops the stop-watch when she hears the echo of the shout. The reading on the stop-watch is 0.56s.

State the **total** distance the sound travels during the 0.56 s.

Calculate the speed of sound in air using the measurements given in part (b).

speed of sound = m/s [3]

The students' value for the speed of sound is **not** accurate. (iii)

Suggest **two** ways of improving the students' experiment.

1.

2.

[Total: 8]

[2]

9 (a) The box lists four materials	9	(a)	The	box	lists	four	materials
------------------------------------	---	-----	-----	-----	-------	------	-----------

		aluminium	iron	plastic	wood		
		s from the box to an d may be used once	,	` '	l.		
	(i) State	all materials that a	e electrical in	sulators.			
							[1]
	(ii) State	e one example of a r	nagnetic mate	erial.			
<i>(</i> 1.)							[1]
(b)	Fig. 9.1 s	hows two magnets, l	P and Q, whic	ch are repelling	each other.		
		N					
		magnet P		mag	net Q		
			Fig.	9.1			
	On magn	et P, the N pole is lal	belled N.				
	On Fig. 9	.1, label the other po	le on magnet	P and both po	les on magnet C	Q .	[1]
(c)		intage that electrom can easily be altered		compared with	permanent ma	gnets, is that th	eir
	State one	other advantage of	an electroma	gnet compared	with a permane	ent magnet.	
							[1]
(d)	A student	wants to make the s	strongest elec	tromagnet poss	sible.		
	Indicate which properties produce the strongest electromagnet.						
	Tick (✓) one box in each list.						
	number of		material	in the core	size o in the	of current coil	
	200 turns		air		20 mA		
	100 turns		iron		0.5A		
	50 turns		plastic		3.0A		
							[3]

[Total: 7]

10 (a) Fig. 10.1 shows a lamp and a resistor connected in a circuit.

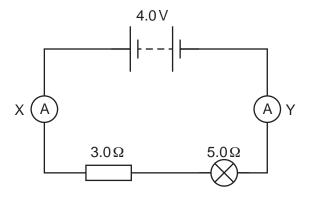


Fig. 10.1

(i) Determine the combined resistance of the 3.0Ω resistor and the 5.0Ω lamp.

combined resistance = Ω [1]

(ii) The reading on ammeter X is 0.50A.

State the reading on ammeter Y.

reading on ammeter Y = A [1]

(b) In another circuit, the $3.0\,\Omega$ resistor and the $5.0\,\Omega$ lamp are connected in parallel, as shown in Fig. 10.2.

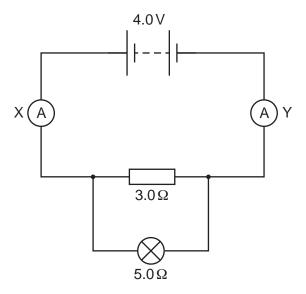


Fig. 10.2

The lamp and resistor have changed from a series to a parallel combination.

State and explain the effect of this change on the current in ammeter X.

(c)	The current in a different lamp is 0.40A when the potential difference (p.d.) across the lamp is
	6.0 V.

Calculate the resistance of the lamp.

resistance of lamp =
$$\Omega$$
 [3]

[Total: 8]

11 A student uses a coil and a magnet on a spring to generate an electromotive force (e.m.f.) that varies. He suspends the magnet above a coil as shown in Fig. 11.1.

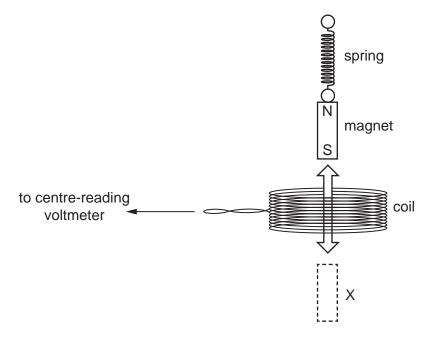


Fig. 11.1

(a) The student pulls the magnet through the coil to X and then releases it. The magnet moves up and down through the coil.

State the type of voltage induced in the coil. Tick (\checkmark) one box.

	alternating				
	digital				
	direct				[1
L۱	Otata tura unava af inama	علام مناه			ון
D)	State two ways of increa	ising the	e voitage induce	ed in the coil.	
	1				
	2				
					[2

[Total: 3]

[Total: 6]

12 (a) Table 12.1 describes four nuclides.

Table 12.1

name of nuclide	plutonium-238	thorium-234	uranium-235	uranium-238
nuclide notation	²³⁸ ₉₄ Pu	²³⁴ ₉₀ Th	²³⁵ ₉₂ U	²³⁸ U

	(i)	State which two nuclides have the same number of protons.
		[1]
	(ii)	State which two nuclides have the same number of nucleons.
		[1]
((iii)	State which one of the four nuclides has the most electrons orbiting when it is in a neutral atom.
		[1]
(b)		rium-234 has a half-life of 24 days. A sample of radioactive material contains 40 mg of ium-234.
	Calculate the mass of thorium-234 remaining after 72 days.	
		mass of thorium-234 remaining = mg [3]

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.